告别GIF,使用Jetpack Compose打造可爱的天气动画 您所在的位置:网站首页 rain 组合 告别GIF,使用Jetpack Compose打造可爱的天气动画

告别GIF,使用Jetpack Compose打造可爱的天气动画

2024-01-14 13:34| 来源: 网络整理| 查看: 265

在这里插入图片描述

1. 项目背景

最近参加了Compose挑战赛的终极挑战,使用Compose完成了一个天气app。之前几轮挑战也都有参与,每次都学到不少新东西。如今迎来最终挑战,希望能将这段时间的积累活学活用,做出更加成熟的作品。 Android 开发挑战赛 | 终极挑战: 天气应用

项目中的挑战

因为没有美工协助,所以我考虑通过代码实现app中的所有UI元素例如各种icon等,这样的UI在任何分辨率下都不会失真,而且可以灵活地实现各种动画效果。

为了降低实现成本,我将app中的UI元素定义成偏卡通的风格,可以更容易地通过代码实现: 在这里插入图片描述

上面这些动画没有使用gif、lottie等三方资源,所有图形都基于Compose代码绘制。

2. MyApp - CuteWeather 2.1 App效果

App界面比较简洁,采用单页面呈现(比赛要求基于SingleScreen实现),各种卡通的天气动画是app的最大特色:

项目地址:https://github.com/vitaviva/compose-weather 在这里插入图片描述

2.2 App界面

App纵向划分为几个功能区域,每个区域都涉及到一些不同的Compose API的使用 在这里插入图片描述 涉及技术点较多,本文主要介绍如何使用Compose绘制自定义图形,并基于这些图形实现动画,其他内容有机会再单独介绍。

3. Compose自定义绘制

像常规的Android开发一样,除了各种默认的Composable控件以外,Compose也提供了Canvas用来绘制自定义UI。

Canvas相关API在各个平台都大同小异,但在Compose上的使用有以下特点:

用声明式的方式创建和使用Canvas通过DrawScope提供必要的state及各种APIsAPIs更简单易用 3.1 声明式地创建和使用Canvas

Compose中,Canvas作为Composable可以声明式地添加到其他Composable中,并通过Modifier进行配置

Canvas(modifier = Modifier.fillMaxSize()){ // this: DrawScope //内部进行自定义绘制 }

传统方式需要获取Canvas句柄命令式的进行绘制,而Canvas{...}通过状态驱动的方式执行block内的绘制逻辑、刷新UI。

3.2 强大的DrawScope

Canvas{...}内部通过DrawScope提供必要的state用来获取当前绘制所需环境变量,例如我们最常用的size。DrawScope还提了各种常用的绘制API,例如drawLine等

Canvas(modifier = Modifier.fillMaxSize()){ //通过size获取当前canvas的width和height val canvasWidth = size.width val canvasHeight = size.height //绘制直线 drawLine( start = Offset(x=canvasWidth, y = 0f), end = Offset(x = 0f, y = canvasHeight), color = Color.Blue, strokeWidth = 5F //设置直线宽度 ) }

上面代码绘制效果如下: 在这里插入图片描述

3.3 简单易用的API

传统的Canvas API需要进行Paint等配置,而DrawScope提供的API则更简单、使用更友好。

例如绘制一个圆,传统的API是这样:

public void drawCircle(float cx, float cy, float radius, @NonNull Paint paint) { //... }

DrawScope提供的API:

fun drawCircle( color: Color, radius: Float = size.minDimension / 2.0f, center: Offset = this.center, alpha: Float = 1.0f, style: DrawStyle = Fill, colorFilter: ColorFilter? = null, blendMode: BlendMode = DefaultBlendMode ) {...}

看起来参数变多了,其实已经通过size等设置了合适的默认值,同时省去了对Paint的创建和配置,使用起来更方便。

使用原生Canvas

目前DrawScope提供的API还不及原生Canvas丰富(比如不支持drawText等),当不满足使用需求时,也可以直接使用原生Canvas对象进行绘制

drawIntoCanvas { canvas -> //nativeCanvas是原生canvas对象,android平台即android.graphics.Canvas val nativeCanvas = canvas.nativeCanvas }

上面介绍了Compose Canvas的基本知识,下面结合app中的具体示例看一下实际使用效果

首先,看一下雨水的绘制过程。

4. 雨天效果

雨天天气的关键是如何绘制不断下落的雨水 在这里插入图片描述

4.1 雨滴的绘制

我们先绘制构成雨水的基本单元:雨滴 在这里插入图片描述 经拆解后,雨水效果可由三组雨滴构成,每一组雨滴分成上下两段,这样在运动时就可以形成接连不断的雨水效果。

我们使用drawLine绘制每一条线段,设置适当的stokeWidth,并通过cap设置端点的圆形效果:

@Composable fun rainDrop() { Canvas(modifier) { val x: Float = size.width / 2 //x坐标: 1/2的位置 drawLine( Color.Black, Offset(x, line1y1), //line1 的起点 Offset(x, line1y2), //line1 的终点 strokeWidth = width, //设置宽度 cap = StrokeCap.Round//头部圆形 ) // line2同上 drawLine( Color.Black, Offset(x, line2y1), Offset(x, line2y2), strokeWidth = width, cap = StrokeCap.Round ) } } 4.2 雨滴下落动画

完成雨滴的图形绘制之后,接下来为两线段添加循环往复的位移动画,形成流动效果。 在这里插入图片描述

以两线段中间空隙为动画的锚点,根据animationState设置其y轴位置,让其从canvas的顶端移动到低端(0 ~ size.hight),然后restart这个动画。

以锚点为基准绘制上下两线段,就可以行成接连不断的雨滴效果了 在这里插入图片描述 代码如下:

@Composable fun rainDrop() { //循环播放的动画 ( 0f ~ 1f) val animateTween by rememberInfiniteTransition().animateFloat( initialValue = 0f, targetValue = 1f, animationSpec = infiniteRepeatable( tween(durationMillis, easing = LinearEasing), RepeatMode.Restart //start动画 ) ) Canvas(modifier) { // scope : 绘制区域 val width = size.width val x: Float = size.width / 2 // width/2是strokCap的宽度,scopeHeight处预留strokCap宽度,让雨滴移出时保持正圆,提高视觉效果 val scopeHeight = size.height - width / 2 // space : 两线段的间隙 val space = size.height / 2.2f + width / 2 //间隙size val spacePos = scopeHeight * animateTween //锚点位置随animationState变化 val sy1 = spacePos - space / 2 val sy2 = spacePos + space / 2 // line length val lineHeight = scopeHeight - space // line1 val line1y1 = max(0f, sy1 - lineHeight) val line1y2 = max(line1y1, sy1) // line2 val line2y1 = min(sy2, scopeHeight) val line2y2 = min(line2y1 + lineHeight, scopeHeight) // draw drawLine( Color.Black, Offset(x, line1y1), Offset(x, line1y2), strokeWidth = width, colorFilter = ColorFilter.tint( Color.Black ), cap = StrokeCap.Round ) drawLine( Color.Black, Offset(x, line2y1), Offset(x, line2y2), strokeWidth = width, colorFilter = ColorFilter.tint( Color.Black ), cap = StrokeCap.Round ) } } 4.3 Compose自定义布局

上面完成了单个雨滴的动画,接下来我们使用三个雨滴组成雨水的效果。

首先可以使用Row+Space的方式进行组装,但是这种方式缺少灵活性,仅通过Modifier很难准确布局三雨滴的相对位置,因此考虑转而使用Compose的自定义布局,以提高灵活性和准确性:

Layout( modifier = modifier.rotate(30f), //雨滴旋转角度 content = { // 定义子Composable Raindrop(modifier.fillMaxSize()) Raindrop(modifier.fillMaxSize()) Raindrop(modifier.fillMaxSize()) } ) { measurables, constraints -> // List of measured children val placeables = measurables.mapIndexed { index, measurable -> // Measure each children val height = when (index) { //让三个雨滴的height不同,增加错落感 0 -> constraints.maxHeight * 0.8f 1 -> constraints.maxHeight * 0.9f 2 -> constraints.maxHeight * 0.6f else -> 0f } measurable.measure( constraints.copy( minWidth = 0, minHeight = 0, maxWidth = constraints.maxWidth / 10, // raindrop width maxHeight = height.toInt(), ) ) } // Set the size of the layout as big as it can layout(constraints.maxWidth, constraints.maxHeight) { var xPosition = constraints.maxWidth / ((placeables.size + 1) * 2) // Place children in the parent layout placeables.forEachIndexed { index, placeable -> // Position item on the screen placeable.place(x = xPosition, y = 0) // Record the y co-ord placed up to xPosition += (constraints.maxWidth / ((placeables.size + 1) * 0.8f)).roundToInt() } } }

Compose中,可以通过Layout{...}对Composable进行自定义布局,content{...}中定义参与布局的子Composable。

跟传统Android视图一样,自定义布局需要先后经历measure、layout两步。

measrue: measurables返回所有待测量的子Composable,constraints类似于MeasureSpec,封装父容器对子元素的布局约束。measurable.measure()中对子元素进行测量layout:placeables返回测量后的子元素,依次调用placeable.place()对雨滴进行布局,通过xPosition预留雨滴在x轴的间隔

经过layout之后,通过 modifier.rotate(30f) 对Composable进行旋转,完成最终效果: 在这里插入图片描述

5. 雪天效果

雪天效果的关键在于雪花的飘落。 在这里插入图片描述

5.1 雪花的绘制

雪花的绘制非常简单,用一个圆圈代表一个雪花

Canvas(modifier) { val radius = size / 2 drawCircle( //白色填充 color = Color.White, radius = radius, style = FILL ) drawCircle(// 黑色边框 color = Color.Black, radius = radius, style = Stroke(width = radius * 0.5f) ) } 5.2 雪花飘落动画

雪花飘落的过程相对于雨滴坠落要复杂一些,由三个动画组成:

下落:改变y轴位置:0f ~ 2.5f左右飘移:改变x轴的offse:-1f ~ 1f逐渐消失:改变alpha:1f ~ 0f

借助InfiniteTransition同步控制多个动画,代码如下:

@Composable private fun Snowdrop( modifier: Modifier = Modifier, durationMillis: Int = 1000 // 雪花飘落动画的druation ) { //循环播放的Transition val transition = rememberInfiniteTransition() //1. 下降动画:restart动画 val animateY by transition.animateFloat( initialValue = 0f, targetValue = 2.5f, animationSpec = infiniteRepeatable( tween(durationMillis, easing = LinearEasing), RepeatMode.Restart ) ) //2. 左右飘移:reverse动画 val animateX by transition.animateFloat( initialValue = -1f, targetValue = 1f, animationSpec = infiniteRepeatable( tween(durationMillis / 3, easing = LinearEasing), RepeatMode.Reverse ) ) //3. alpha值:restart动画,以0f结束 val animateAlpha by transition.animateFloat( initialValue = 1f, targetValue = 0f, animationSpec = infiniteRepeatable( tween(durationMillis, easing = FastOutSlowInEasing), ) ) Canvas(modifier) { val radius = size.width / 2 // 圆心位置随AnimationState改变,实现雪花飘落的效果 val _center = center.copy( x = center.x + center.x * animateX, y = center.y + center.y * animateY ) drawCircle( color = Color.White.copy(alpha = animateAlpha),//alpha值的变化实现雪花消失效果 center = _center, radius = radius, ) drawCircle( color = Color.Black.copy(alpha = animateAlpha), center = _center, radius = radius, style = Stroke(width = radius * 0.5f) ) } }

animateY的targetValue设为2.5f,让雪花的运动轨迹更长,看起来更加真实

5.3 雪花的布局

像雨滴一样,对雪花也使用Layout自定义布局

@Composable fun Snow( modifier: Modifier = Modifier, animate: Boolean = false, ) { Layout( modifier = modifier, content = { //摆放三个雪花,分别设置不同duration,增加随机性 Snowdrop( modifier.fillMaxSize(), 2200) Snowdrop( modifier.fillMaxSize(), 1600) Snowdrop( modifier.fillMaxSize(), 1800) } ) { measurables, constraints -> val placeables = measurables.mapIndexed { index, measurable -> val height = when (index) { // 雪花的height不同,也是为了增加随机性 0 -> constraints.maxHeight * 0.6f 1 -> constraints.maxHeight * 1.0f 2 -> constraints.maxHeight * 0.7f else -> 0f } measurable.measure( constraints.copy( minWidth = 0, minHeight = 0, maxWidth = constraints.maxWidth / 5, // snowdrop width maxHeight = height.roundToInt(), ) ) } layout(constraints.maxWidth, constraints.maxHeight) { var xPosition = constraints.maxWidth / ((placeables.size + 1)) placeables.forEachIndexed { index, placeable -> placeable.place(x = xPosition, y = -(constraints.maxHeight * 0.2).roundToInt()) xPosition += (constraints.maxWidth / ((placeables.size + 1) * 0.9f)).roundToInt() } } } }

最终效果如下: 在这里插入图片描述

6. 晴天效果

通过一个旋转的太阳代表晴天效果 在这里插入图片描述

6.1 太阳的绘制

太阳的图形由中间的圆形和围绕圆环的等分线段组成。

@Composable fun Sun(modifier: Modifier = Modifier) { Canvas(modifier) { val radius = size.width / 6 val stroke = size.width / 20 // draw circle drawCircle( color = Color.Black, radius = radius + stroke / 2, style = Stroke(width = stroke), ) drawCircle( color = Color.White, radius = radius, style = Fill, ) // draw line val lineLength = radius * 0.2f val lineOffset = radius * 1.8f (0..7).forEach { i -> val radians = Math.toRadians(i * 45.0) val offsetX = lineOffset * cos(radians).toFloat() val offsetY = lineOffset * sin(radians).toFloat() val x1 = size.width / 2 + offsetX val x2 = x1 + lineLength * cos(radians).toFloat() val y1 = size.height / 2 + offsetY val y2 = y1 + lineLength * sin(radians).toFloat() drawLine( color = Color.Black, start = Offset(x1, y1), end = Offset(x2, y2), strokeWidth = stroke, cap = StrokeCap.Round ) } } }

均分360度,每间隔45度画一条线段,cos计算x轴坐标,sin计算y轴坐标。

6.2 太阳的转动

太阳转动的动画很简单,通过Modifier.rotate不断转动Canvas即可。

@Composable fun Sun(modifier: Modifier = Modifier) { //循环动画 val animateTween by rememberInfiniteTransition().animateFloat( initialValue = 0f, targetValue = 360f, animationSpec = infiniteRepeatable(tween(5000), RepeatMode.Restart) ) Canvas(modifier.rotate(animateTween)) {// 旋转动画 val radius = size.width / 6 val stroke = size.width / 20 val centerOffset = Offset(size.width / 30, size.width / 30) //圆心偏移量 // draw circle drawCircle( color = Color.Black, radius = radius + stroke / 2, style = Stroke(width = stroke), center = center + centerOffset //圆心偏移 ) //...略 } }

此外,DrawScope也提供了rotate的API,也可以实现旋转效果。

最后我们给太阳的圆心增加一个偏移量,让转动更加活泼: 在这里插入图片描述

7. 动画的组合、切换

分别实现了Rain、Snow、Sun等图形之后就可以使用这些图形组合成各种天气效果了。

7.1 将图形组合成天气

Compose的声明式语法非常有利于UI的组合:

比如,多云转阵雨,我们摆放Sun、Cloud、Rain等元素后,通过Modifier调整各自位置即可:

@Composable fun CloudyRain(modifier: Modifier) { Box(modifier.size(200.dp)){ Sun(Modifier.size(120.dp).offset(140.dp, 40.dp)) Rain(Modifier.size(80.dp).offset(80.dp, 60.dp)) Cloud(Modifier.align(Aligment.Center)) } } 7.2 让动画切换更加自然

在这里插入图片描述 当在多个天气动画之间进行切换时,我们希望能实现更自然的过渡。实现思路是将组成天气动画的各元素的Modifier信息变量化,然后通过Animation进行改变

假设所有的天气都可以由Cloud、Sun、Rain组合而成,无非就是offset、size、alpha值的不同:

ComposeInfo data class IconInfo( val size: Float = 1f, val offset: Offset = Offset(0f, 0f), val alpha: Float = 1f, ) //天气组合信息,即Sun、Cloud、Rain的位置信息 data class ComposeInfo( val sun: IconInfo, val cloud: IconInfo, val rains: IconInfo, ) { operator fun times(float: Float): ComposeInfo = copy( sun = sun * float, cloud = cloud * float, rains = rains * float ) operator fun minus(composeInfo: ComposeInfo): ComposeInfo = copy( sun = sun - composeInfo.sun, cloud = cloud - composeInfo.cloud, rains = rains - composeInfo.rains, ) operator fun plus(composeInfo: ComposeInfo): ComposeInfo = copy( sun = sun + composeInfo.sun, cloud = cloud + composeInfo.cloud, rains = rains + composeInfo.rains, ) }

如上,ComposeInfo中持有各种元素的位置信息,运算符重载使其可以在Animation中计算当前最新值。

接下来,定义各不同天气的ComposeInfo:

//晴天 val SunnyComposeInfo = ComposeInfo( sun = IconInfo(1f), cloud = IconInfo(0.8f, Offset(-0.1f, 0.1f), 0f), rains = IconInfo(0.4f, Offset(0.225f, 0.3f), 0f), ) //多云 val CloudyComposeInfo = ComposeInfo( sun = IconInfo(0.1f, Offset(0.75f, 0.2f), alpha = 0f), cloud = IconInfo(0.8f, Offset(0.1f, 0.1f)), rains = IconInfo(0.4f, Offset(0.225f, 0.3f), alpha = 0f), ) //雨天 val RainComposeInfo = ComposeInfo( sun = IconInfo(0.1f, Offset(0.75f, 0.2f), alpha = 0f), cloud = IconInfo(0.8f, Offset(0.1f, 0.1f)), rains = IconInfo(0.4f, Offset(0.225f, 0.3f), alpha = 1f), ) ComposedIcon

接着,定义ComposedIcon,根据ComposeInfo实现不同的天气UI

@Composable fun ComposedIcon(modifier: Modifier = Modifier, composeInfo: ComposeInfo) { //各元素的ComposeInfo val (sun, cloud, rains) = composeInfo Box(modifier) { //应用ComposeInfo到Modifier val _modifier = remember(Unit) { { icon: IconInfo -> Modifier .offset( icon.size * icon.offset.x, icon.size * icon.offset.y ) .size(icon.size) .alpha(icon.alpha) } } Sun(_modifier(sun)) Rains(_modifier(rains)) AnimatableCloud(_modifier(cloud)) } } ComposedWeather

最后,定义ComposedWeather记录当前ComposedIcon,并在其发生变更时使用动画进行过度:

@Composable fun ComposedWeather(modifier: Modifier, composedIcon: ComposedIcon) { val (cur, setCur) = remember { mutableStateOf(composedIcon) } var trigger by remember { mutableStateOf(0f) } DisposableEffect(composedIcon) { trigger = 1f onDispose { } } //创建动画(0f ~ 1f),用于更新ComposeInfo val animateFloat by animateFloatAsState( targetValue = trigger, animationSpec = tween(1000) ) { //当动画结束时,更新ComposeWeather到最新state setCur(composedIcon) trigger = 0f } //根据AnimationState计算当前ComposeInfo val composeInfo = remember(animateFloat) { cur.composedIcon + (weatherIcon.composedIcon - cur.composedIcon) * animateFloat } //使用最新的ComposeInfo显示Icon ComposedIcon( modifier, composeInfo ) } 8 总结

本文以天气app为例介绍了Compose的自定义绘制、布局以及动画等的基本使用方法。 Compose通过声明式的方式,结合Canvas实现定义图形和动画,这相比与传统命令式的代码来的更加简单。更低的实现成本让代码替代Gif实现简单的动画成为可能,经代码绘制的效果在清晰度以及帧率上都要远超越Gif,欢迎大家下载源码体验~

在我看来Compose核心不仅是UI,后面有机会会继续分享一些关于架构以及底层实现的文章,欢迎大家持续关注~

参考

MyApp#CuteWeather Compose#Canvas Compose#CustomLayout



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有